INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification
نویسندگان
چکیده
This paper describes our deep learning-based approach to sentiment analysis in Twitter as part of SemEval-2016 Task 4. We use a convolutional neural network to determine sentiment and participate in all subtasks, i.e. two-point, three-point, and five-point scale sentiment classification and two-point and five-point scale sentiment quantification. We achieve competitive results for two-point scale sentiment classification and quantification, ranking fifth and a close fourth (third and second by alternative metrics) respectively despite using only pre-trained embeddings that contain no sentiment information. We achieve good performance on three-point scale sentiment classification, ranking eighth out of 35, while performing poorly on fivepoint scale sentiment classification and quantification. An error analysis reveals that this is due to low expressiveness of the model to capture negative sentiment as well as an inability to take into account ordinal information. We propose improvements in order to address these and other issues.
منابع مشابه
UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification
The paper describes our submission to the task on Sentiment Analysis on Twitter at SemEval 2016. The approach is based on a Deep Learning architecture using convolutional neural networks. The approach used only word embeddings as features. The submission used embeddings created from a corpus of news articles. We report on further experiments using embeddings built for a corpus of tweets as well...
متن کاملMDSENT at SemEval-2016 Task 4: A Supervised System for Message Polarity Classification
This paper describes our system submitted for the Sentiment Analysis in Twitter task of SemEval-2016, and specifically for the Message Polarity Classification subtask. We used a system that combines Convolutional Neural Networks and Logistic Regression for sentiment prediction, where the former makes use of embedding features while the later utilizes various features like lexicons and dictionar...
متن کاملSwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision
In this paper, we propose a classifier for predicting message-level sentiments of English micro-blog messages from Twitter. Our method builds upon the convolutional sentence embedding approach proposed by (Severyn and Moschitti, 2015a; Severyn and Moschitti, 2015b). We leverage large amounts of data with distant supervision to train an ensemble of 2-layer convolutional neural networks whose pre...
متن کاملEICA at SemEval-2017 Task 4: A Convolutional Neural Network for Topic-based Sentiment Classification
This paper describes our approach for SemEval-2017 Task 4 Sentiment Analysis in Twitter (SAT). Its five subtasks are divided into two categories: (1) sentiment classification, i.e., predicting topic-based tweet sentiment polarity, and (2) sentiment quantification, that is, estimating the sentiment distributions of a set of given tweets. We build a convolutional sentence classification system fo...
متن کاملPotTS at SemEval-2016 Task 4: Sentiment Analysis of Twitter Using Character-level Convolutional Neural Networks
This paper presents an alternative approach to polarity and intensity classification of sentiments in microblogs. In contrast to previous works, which either relied on carefully designed hand-crafted feature sets or automatically derived neural embeddings for words, our method harnesses character embeddings as its main input units. We obtain task-specific vector representations of characters by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016